If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2=59.375
We move all terms to the left:
t^2-(59.375)=0
We add all the numbers together, and all the variables
t^2-59.375=0
a = 1; b = 0; c = -59.375;
Δ = b2-4ac
Δ = 02-4·1·(-59.375)
Δ = 237.5
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{237.5}}{2*1}=\frac{0-\sqrt{237.5}}{2} =-\frac{\sqrt{}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{237.5}}{2*1}=\frac{0+\sqrt{237.5}}{2} =\frac{\sqrt{}}{2} $
| 11-x=28 | | 82=2+4x | | -7.5r=-3.33 | | 6x+11=4+19x | | 2(x-3)=44 | | X-3)7=6x+21 | | 6x+11=4-19x | | 13/7n=-13/4 | | 20+18n=-14 | | 24a-13=49 | | 1=2u-15 | | 6+3x-1/3+2x=2/3x+2/5 | | -4=2(3x+11)-4x | | 2(1-2x)=1/4(6x+9) | | -3x+2-6x=65 | | -15r=-16r-11 | | a^2+21a-136=0 | | 9-4x=3x^2-6x+4 | | 2a+11=34 | | 11x-4+60=16 | | 13a=24=40 | | -5x+3(-2x-15)=-122 | | 1/2(-2y-7)=3/4 | | 3x+8+11x-24=180 | | -6+3z=-24 | | -17=12r=185 | | 2x+7=x-19 | | 38a-13=48 | | 15/4+m=53/8 | | -8-12p=184 | | 10y+7-4y=-5+4y=-5+4y+22 | | 4g=-1 |